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Abstract
Measures of allele and haplotype diversity, which are fundamental properties in population
genetics, often follow heavy tailed distributions. These measures are of particular interest in
the field of hematopoietic stem cell transplant (HSCT). Donor/Recipient suitability for HSCT
is determined by Human Leukocyte Antigen (HLA) similarity. Match predictions rely upon a
precise description of HLA diversity, yet classical estimates are inaccurate given the heavy-
tailed nature of the distribution. This directly affects HSCT matching and diversity measures
in broader fields such as species richness. We, therefore, have developed a power-law
based estimator to measure allele and haplotype diversity that accommodates heavy tails
using the concepts of regular variation and occupancy distributions. Application of our esti-
mator to 6.59 million donors in the Be The Match Registry revealed that haplotypes follow a
heavy tail distribution across all ethnicities: for example, 44.65% of the European American
haplotypes are represented by only 1 individual. Indeed, our discovery rate of all U.S. Euro-
pean American haplotypes is estimated at 23.45% based upon sampling 3.97% of the pop-
ulation, leaving a large number of unobserved haplotypes. Population coverage, however,
is much higher at 99.4% given that 90% of European Americans carry one of the 4.5%most
frequent haplotypes. Alleles were found to be less diverse suggesting the current registry
represents most alleles in the population. Thus, for HSCT registries, haplotype discovery
will remain high with continued recruitment to a very deep level of sampling, but population
coverage will not. Finally, we compared the convergence of our power-law versus classical
diversity estimators such as Capture recapture, Chao, ACE and Jackknife methods. When
fit to the haplotype data, our estimator displayed favorable properties in terms of conver-
gence (with respect to sampling depth) and accuracy (with respect to diversity estimates).
This suggests that power-law based estimators offer a valid alternative to classical diversity
estimators and may have broad applicability in the field of population genetics.
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Author Summary
The distribution of haplotypes and species tend to be heavy tailed. The heavy tail is ex-
pected from theoretical considerations and is observed in most populations. Accurate
measures of diversity are difficult to achieve given that a limited number of common hap-
lotypes represent the majority of the population, whereas the major contributor to haplo-
type diversity comes from unique haplotypes that are “rare” and present in only a fraction
of the population. A major issue for unrelated HSCT donor registries is estimating popula-
tion coverage with respect to servicing the public need. We here use a power-law method-
ology that accommodates heavy-tails to estimate both the population coverage by
ethnicity in the US and the genetic diversity of alleles and haplotypes. For the European
American population, which has the deepest sampling amongst ethnicities, we show that
registry population coverage is better than 99%, but the diversity of this sample only repre-
sents 40% of the unique haplotypes expected to be found in the population. Population
coverage for other ethnicities was poorer and ranged down to 92% as was the case for Na-
tive Americans that had the worst coverage. We further show that the formalism devel-
oped here produces better estimates of the population properties than existing methods.

Introduction
Allele and Haplotype diversity are fundamental properties in the domain of population genet-
ics for describing the general characteristics of any population of diploid organisms. In the con-
text of hematopoietic stem cell transplant (HSCT) matching, proper estimates of allele and
haplotype diversity are essential for describing the population genetics that govern the clinical
suitability of a donor/patient match. Matching algorithms scan large unrelated donor registries
to identify suitable matches based upon individual Human Leukocyte Antigen (HLA) genetic
typings. HLA is defined by the super locus of genes contained in the major histocompatibility
complex (MHC) on the 6th chromosome that encodes proteins governing the adaptive immune
system response [1]. Successful transplantation requires careful matching of donor/recipient
HLA to avoid adverse immune reactions that result in graft rejection or graft versus host dis-
ease [2,3]. The ambiguous nature of HLA typing, however, presents challenges for transplant
matching, given that donor registries contain a range of typing methods and allele definitions
that have evolved since the 1980’s. This “mixed resolution” data contains uncertainties regard-
ing the exact alleles each donor has and their phase on the chromosome. The standard ap-
proach for resolving these uncertainties is to impute each donor’s HLA typing to a common
allele resolution and set chromosomal phase using expectation maximization (EM) algorithms
[4]. Given a proper candidate set of haplotypes, EM algorithms work well to estimate the distri-
bution of this defined population, which becomes the reference data for computing accurate
donor/patient match predictions.

However, we often do not know what constitutes a complete or reasonable candidate set of
haplotypes describing the clinically relevant variation among individuals. This problem arises
due to the following main reasons: Lack of Adequate Sampling Depth—the MHC region has
the highest allele diversity within the human genome, so even a large sample relative to the
population is unlikely to observe all clinically relevant haplotypes. For example, in the Europe-
an American population 44.65% of haplotypes in the Be The Match registry are singletons (i.e.
are represented by only one individual), yet the most frequent haplotype represents 6.11% of
the sample so one might falsely conclude that variation is lower than it really is. This motivates
the need to develop reliable methods for assessing sampling depth and the benefits of
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continued sampling; Ambiguous Nature of HLA Typing—true haplotype variation is con-
founded by ambiguous typing methods, which describe each individual as a set of possible al-
leles at each loci (consistent with HLA typing). When candidate haplotypes are constructed
from cross-combinations of these possible alleles, an intractably large set results due to the
“curse of dimensionality”[5]. Currently, this exhaustive set of haplotypes is heavily trimmed
prior to estimation with the EM algorithm, but the trimming strategies are not quantitatively
informed; Variation in Diversity Among Populations—ancestral migration patterns have re-
sulted in different patterns of allele and haplotype diversity among ethnic groups, implying
that sampling depth requirements are likely to vary by population. Clearly, there is a need to
develop quantitative estimates of allele and haplotype diversity.

More formally, let A denote the number of unique HLA alleles in a population andH the
number of unique HLA haplotypes (see Table 1 for all symbols used). Estimating A andH is a
difficult problem given that we do not directly observe all alleles and haplotypes in the popula-
tion. Instead, we must establish and extrapolate a relationship between the number of kinds we
observe and the frequency of each kind. Mathematical frameworks for describing this relation-
ship have been developed in the study of species richness and occupancy. Capture-recapture
methods have been adapted from ecology to genetics for estimating the total number of differ-
ent alleles/haplotypes [6]. Such methods could be applied to estimate A andH by tagging re-
samples of alleles and haplotypes. Although interesting, these capture recapture methods
require a very large sampling depth for heavy tailed distributions, as will be shown. Occupancy
distributions [7]offer a more natural representation of our data sampling process and use the
mathematical concept of regular variation to extrapolate A andH using a power law function
that describes the distribution of allele and haplotype frequencies in the population [7,8]. The
power law relationship was constructed under the assumption that an infinite number of cate-
gories (or kinds) exist in the population; so for our purposes we apply a boundary constraint to
estimate a finite number of categories under this general framework.

In the medical field of HSCT, estimates of A are largely catalog based; unique HLA genomic
sequences are stored in databases as alleles using locus-specific nomenclature (the best known

Table 1. List of symbols used.

Symbol Definition

pj Apriori probability of choosing a haplotype j for a person in the population.

Ntotd Total population size.

H = Nhap = KN total Number of unique haplotypes. The range of j in pj is from 1 to H.

A Total number of unique alleles in the population.

U(R) Expected number of unique haplotypes in a sample size of R.

α Power of distribution.

C Normalization factor.

Xmin Minimal value of non zero pj.
Xmax Maximal value of non zero pj.
R Sample size.

Z(R) Expected probability for an unobserved haplotype in a sample of size R.

X0 Point at which slope of distribution changes.

VH(x) Exceedance function of the haplotype frequency distribution.

μH (x) Density of pj values—the number of haplotypes in a region = the number of haplotypes
between x and x+dx (the integral over μH (x) from x to infinity is VH(x)).

pHðxÞ ¼
vHðxÞ
H

Density distribution function for the probability of observing a clone of frequency x.

doi:10.1371/journal.pcbi.1004204.t001
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being the IMGT/HLA database cataloging 10,653 allele definitions at the time of writing [9]).
Further information on the prevalence of specific HLA alleles in the general population is pro-
vided by the Common andWell Documented (CWD) allele list [10]. Estimates ofH are typical-
ly based on EM derived HLA haplotype frequencies, which represent nomenclature-based allele
combinations that are likely to be found in the population. These estimates take into account
that genetic information is inherited in blocks making the true value ofHmuch smaller than
the expansion of all possible allele combinations. For example, estimates ofH within the United
States population in 2013 identified over 160,000 unique 6-locus haplotypes in the Be The
Match Registry, where 99% of the timeH was comprised of combinations of “common” alleles
and roughly 90% of the known IMGT documented alleles (A) were absent from the haplotype
frequencies [11]. Thus, current methods for estimating of A andH rely upon direct observation
of a given allele or haplotype. For estimating the “common” portions of A andH, this is a reli-
able strategy for sufficient observational data is likely to exist. However, such an approach is un-
suitable for estimating the “rare” portion of A andH lacking direct observational data. Evidence
for the existence of a large number of “rare” alleles and haplotypes in the overall population is
outlined by Klitz [12], who modeled the effects of gene conversion, point mutations, and re-
combination to establish the heavy tailed nature of allele and haplotype distributions.

To estimate A andH, we, therefore, construct a heavy tail relationship based upon occu-
pancy distributions and the properties of regular variation. This power-law framework is use-
ful for modeling the probability mass (and number) of A andH that are unseen in the sample
and represented by the “invisible” tail of the distribution. We perform this on 6-locus HLA
data (A~C~B~DRBX~DRB1~DQB1; where DRBX = DRB3/4/5) from the Be The Match
Registry, which is one of the largest data sets characterizing human HLA population genetics
containing the typing information for 6.59 million donors [11]. We also assess registry cover-
age, which is the proportion of the total population occupied by the observed haplotypes, of
A andH with respect to the potential base of patients seeking HSCT to inform donor recruit-
ment strategies. Last, we discuss broader applications of the power-law methodology outside
HSCT for modeling species richness in the field of ecology, which is characterized by similar
heavy-tailed distributions.

Results
Haplotype Distribution Formalism
In order to estimate the total number of unique haplotypesH having probability pj for haplo-
type j 1$j$H,0$pj$1, we define a counting function (vH (x)),also denoted an exceedance
function, representing the number of haplotypes with a relative frequency (i.e. pj) above or
equal to x. Observations suggest that vH (x) can be approximated by a scale free function:

vHðxÞ / x%b: ð1Þ

Note that in reality, vH (x) can only take discrete values. However, we here take a continuous
approximation of.VH (x) This approximation stops being valid at some maximal and minimal
haplotype relative frequencies (Xmin and Xmax) Obviously, a (unique) haplotype cannot have a
frequency of less than 1 and, thus, a relative frequency of less than1 / Ntotal (Xmin & 1 / Ntotal),
where Ntotal is the total number of haplotypes in the population (twice the total population size
since each sampled person has two sets of haplotypes). Ntotal is typically much larger than the
number of unique haplotypes,H.

Similarly, above a given relative frequency, vH (x) becomes smaller than 1, and the ap-
proximation stops being valid. The total number of unique haplotypes in this formalism is
H = VH (Xmin).
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Given the continuous formalism, one can also define a haplotype count density (which is
not a formal density function, since it is not normalized to 1), representing the number of
unique haplotypesH in a given relative frequency interval of dx:

mHðxÞdx ¼ vHðxÞ % vHðx þ dxÞ: ð2Þ

Based on the definition of vH(x), μH(x) obeys:

Zxmax

xmin

mHðxÞdx ¼ H: ð3Þ

Moreover, if vH (x) is a scale free function, so is μH (x):

mHðxÞdx / x%adx; where a¼bþ 1: ð4Þ

μH (x)is not a probability density function (PDF). However it can be normalized, by defining:

pHðxÞ ¼
mHðxÞ
H

; ð5Þ

which is a proper density distribution function. Thus, pH(x) provides a description of how
common (i.e. the density) each pj is in the population. Further, a proper cumulative distribu-
tion function (CDF) for the pj’s (the relative haplotype frequencies) can be derived by normal-
izing VH(x) where Prðpj $ xÞ ¼ 1% vHðxÞ=H, since vHðxÞ=H represents the complementary
CDF (i.e.1-Pr(pj$x)). Also, as noted above, the power law exponent of μH(x) is 1 unit greater
than the power law exponent of VH(x)since these two quantities share the properties linking
CDFs to PDFs, namely that a PDF is proportional to the first derivative of its CDF.

Previous models of haplotype frequency using slowly varying distributions assumed unlim-
ited population size and the existence of an infinite number of unique haplotypesH
[7,8,13,14]. In order to estimate the properties of the real population haplotype distribution, a
parallel theory is required for finite populations. The finite population affects the upper and
lower bounds of the distribution. The lower bound is determined by the absence of relative fre-
quencies smaller than 1 / Ntotal and is common to all types of distributions. The upper bound is
specific to heavy tail distributions. In such distributions, the contribution of the right tail to the
overall probability mass is considerable. As such, the normalization constant of the distribution
is greatly affected by the maximal relative frequency in the population (Xmax).

We here expand these methods to finite sized populations (and not only finite samples of an
infinite population). In order to incorporate the finite size of the population, minimal and max-
imal relative haplotype frequencies are defined (Xmin and Xmax). As mentioned, the minimal
frequency for a haplotype cannot be less than one person in the whole Ntotal population that
carries one copy of this haplotype (Xmin&Ntotal

-1). However, in many realistic cases, the scale
free distribution only starts at a higher value than that.

The upper cutoff (Xmax) can be determined by the total population Ntotalin the following
way: Let us separate the values of x into bins. As mentioned, the minimum difference between
relative frequencies is Ntotal

-1. We can thus define Ntotal
-1to be the minimal bin size. Per defini-

tion, at the largest ‘x’ value, there is typically one unique haplotype. Thus,vH(xmax) = 1, leading
to:

mHðXmaxÞdx ¼ 1 ) mHðXmaxÞ
1

Ntotal

$ 1 ) pHðXmaxÞ $
Ntotal

H
ð6Þ

Assuming Xmax is an upper threshold, we have the equal sign in the equation and in this case
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Xmax can then be numerically extracted from Eq 6. In many realistic cases, the scale free distri-
bution has an exponential cutoff, starting at much lower values and Xmax can be lower (see S2
Text).

Estimates of H (Number of Unique Haplotypes)
The observed portion ofH has been growing over the years, yet there is still a significant por-
tion that remains unobserved. It is thus of interest to estimate the total size ofH, and the rela-
tion between the sampling size and the portion ofH that we actually observe. If the haplotype
relative frequency distribution pH (x) was light tailed, most haplotypes would have the same
order of frequency. In such a case, it would have been enough to sample a limited part of the
population to detect the vast majority of different haplotypes and estimateH. More specifically,
if the sample would be at least an order larger thanH, most unique haplotypes would be de-
tected. However, in heavy tailed distributions (such as power-law distributions) the vast major-
ity of haplotypes are very rare. A deep sampling is thus required for a precise estimate ofH and
a very deep sample is required to observe all unique haplotypes. On the other hand, the contri-
bution of these rare haplotypes to the coverage is often negligible since most of the population
has common haplotypes. The precise balance between these two phenomena is determined by
the power exponent of the distribution (α).

Formally, the expected number of unique haplotypes (U(R)) in a sample size (R) can be esti-
mated, assuming a truncated power law formalism as defined above, to be (see S1–S3 Texts):

UðRÞ ¼ H % 2% a
Xmax

2%a % Xmin
2%a

Ra%1½gð1% a;RXmaxÞ % gð1% a;RXminÞ); ð7Þ

where γ is the partial gamma function. The total number of unique haplotypes can be comput-
ed to be:

H ¼ 2% a
1% a

Xmax
1%a % Xmin

1%a

Xmax
2%a % Xmin

2%a
ð8Þ

Estimates of the Distribution Properties
The estimates above require the slope of the distribution (α). Many methods have been pro-
posed to estimate this slope, including a fit of the CDF or the PDF, or a fit of the power of the
Zipf plot [15]. However, such methods have been argued to be flawed, as discussed in an excel-
lent review by Clauset et al. [16]. The same authors have proposed estimates for the slope of
the scale free distribution for either continuous [17] (Eq 9) or discrete (Eq 10) distributions:

a ¼ 1þ n
Xn

j¼1

ln
pj
pmin

" #%1

ð9Þ

a ¼ 1þ n
Xn

j¼l

1n
yj

ymin % 0:5

" #%1

; ð10Þ

where n is the total number of observed haplotypes, pj's are the haplotype relative frequencies,
pmin is the relative frequency of the rarest observed haplotype, y's are the parallel values in abso-
lute frequencies for the discrete case and ymin is the minimal absolute frequency.
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Another estimator based on the asymptotic properties of regular variation was proposed by

Ohannessian et al. for α2[1,2] [7,18]:a ¼ Kn;1

Kn
þ 1. This estimator is based on the ratio between

Kn,1—the number of haplotypes which appear only once in the sample, and Kn—the total num-
ber of unique haplotypes in the sample. Note that this estimator was derived for the CDF and
β = α-1, which is 1 less than our PDF based estimator. While these methods are precise for a
full power law distribution, they do not converge to the proper value when the distribution is
truncated either from above or from below (Fig 1A). We also checked the convergence of Eq
10 when using minimal absolute frequency y*which is larger or equal to yminmentioned

above:a ¼ 1þ n
Xn

j¼Jmin

ln
yj

y * %0:5

" #%1

. This truncated power law estimate does converge to the

right value, but very slowly (Fig 1A orange circles). Formally, we estimated the fit to the distri-
bution using a Kolmogorov Smirnov test, and used the lower cutoff Jmin producing the best fit.

Fig 1. Estimation of α and of haplotype number for different sample sizes. A. Convergence of estimates of the power of distribution α to real value in
samples from a simulated scale free distribution with a lower cutoff. The real value is the black line with the 'x' signs. The estimate using our method quickly
converges to the proper value—1.5 (purple line with diamonds). The estimates using either the discrete (red line with squares) or continuous (blue lines with
circles) Clauset estimates, or the Ohannessian et al. estimate (green lines with circles) do not converge, even when more than half the distribution is
sampled. A Clauset discrete estimate with a minimal cutoff (orange line with circles) converges almost as well as our algorithm.B. Comparison of haplotype
number estimate as a function of the sample size, using a capture recapture method (red squares), Jackknife estimators and the parametric estimate
proposed here (blue diamonds), using the same simulation as above. The real number is a black full line with 'x' signs. One can clearly see that the
parametric estimate developed here converges to a good estimate, even for a very small sample.

doi:10.1371/journal.pcbi.1004204.g001
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We have thus adopted a different approach based on a numerical fit of the observed value of
U(R) to Eq 7–8 for different values of R. We compute U(R)from the observed data for different
R values and find the parameters leading to a best fit between Eq 7–8 and the observed data.
The parameters are bounded by Eq 6 for Xmax and Ntotal

-1 for Xmin. The numerical minimiza-
tion is initialized with Xmax from the observed data, Xmin at its boundary value, and α as it is
computed from Eq 9 (for a schematic figure see Fig 2). The value of α computed using this esti-
mate converges to the proper value at limited sampling depth (Fig 1A).

Methodology Validation
To validate the correctness of the haplotype number estimate in Eq 7 and 8, we did multiple
validations as follows: As a first validation, we chose values of Xmax, Xmin and α, and then calcu-
latedH using Eq 8. We generated H haplotypes with relative frequencies (pj ’ s) taken from a
pure power law distribution with exponent of α. Next, we generated samples of different sizes
(R) based on the pj ’ s values. We compared the expected value of U (R)(Eq 7) to the actual
number of different unique haplotypes that we got in the sample, with an excellent fit (less
than 1% deviation—S1 Fig). A similar analysis with a truncated power law gave similar results.

Fig 2. Schematic figure. (A) We observe a population with different haplotypes. From the population we
extract two measures—the haplotype frequency distribution (B) and the number of unique haplotypes as a
function of the sample size (C). We assume that the frequency distribution (B) is a scale free distribution with
upper and lower cutoff values Xmin$x$Xmax. For the sake of simplicity, we assume a zero probability to
observe haplotypes with frequencies beyond these values. We provide an initial guess for the lower cutoff to
be limited by the total population size, and the upper cutoff, we limit by an upper estimate from the total
population size (Eq B6). We use an initial guess of Xmin at its boundary, the Clauset estimate for the slope,
and the observed highest frequency X 0 max. We then fit the observed unique haplotype curve (C) with an
analytical formula for the expected shape (D) with a cost function of

X

R0

ðlogðUðR0Þ % logðobserved ðR0ÞÞ2 *

logðobserved ðR0ÞÞ for different values of sample sizes R'. Finally, we extract the optimal parameters (E) and
produce an estimate of the number of unique haplotypes for any population size N, where N is the target
population size.

doi:10.1371/journal.pcbi.1004204.g002
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We then compared the convergence rate of our method with other frameworks for estimat-
ingH. We used a simulated population from a truncated power law, as described above and
formed sub samples of incremental size. We then generated estimates ofH as a function of in-
creasing sub-sample size.

We compared our method with a capture-recapture formula [6]. This method was adapted
to compute the total number of different alleles instead of the total population as is performed
in ecology. In order to compute the capture recapture estimate, we divided each sub-sample
into two smaller sub samples: A and B. We then computed the ratio between the product of the
number of different alleles/haplotypes in A and B and the number of different alleles/haplo-
types in their intersection:jUniqueðAÞj * juniqueðBÞj=jUniqueðA [ BÞj. We further compared
our method with a Jackknife based estimator [19]. Capture-recapture and power-law estimates
were found to converge to the true value ofH, but the capture-recapture method required a
very deep sample of the population to attain accuracy whereas the power-law method con-
verged quickly and offered accurate estimates, even with limited sampling (Fig 1B). The Jack-
knife based estimator did not converge to the proper value.

The field of species richness estimation is very wide and a large number of methods to esti-
mate species richness have been proposed (e.g. [20] and supplementary material therein).
Many of these methods have been merged into the CatchAll software [21]. To further compare
our method, with existing state of the art methods, we have tested these measures on the same
samples. All methods proposed by CatchAll showed a very slow convergence, or actually no
convergence (Fig 3).

Fig 3. Comparisons of methods to evaluate the haplotype number.We compare the Bunge and Barger
(2008) method as implemented in the Catchall model using a population with scale free frequency distribution
of haplotypes with a slope of -1.5 and compare the estimated species richness as supplied by the Catchall
software for all models where the software converges to a result. These models include parametric
predictions procedures, such as Mixture-of-two-exponentials-mixed Poisson and Mixture-of-three-
exponentials-mixed Poisson on the observed species richness or on their log values and non-parametric
procedures, such as the ACE (Abundance-based Coverage Estimator) ACE1 (Abundance-based Coverage
Estimator for highly heterogeneous cases) and different versions of the Chao-Bunge gamma-Poisson
estimator. Each line represents the estimated number of haplotypes using one of the Catchall methods. The
black line represents the real simulated species number. The purple line with diamonds represents our
estimates. Our estimates converge much faster and to a much more precise estimate of the real haplotype
number than any of the methods proposed by Catchall.

doi:10.1371/journal.pcbi.1004204.g003
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In order to further validate the methodology in a realistic regime, we used 7.8 million sam-
ples from Be the Match Registry, which identified 88,621 haplotypes as estimated in the EM al-
gorithm from the European American population, and used a sub-sample of half a million
haplotypes to estimate the parameters of the distribution (Xmax, Xmin and α). We then validated
that the resulting values fit the observed distribution all the way to the full sample size (7.8e6)
and extrapolated it to the total European American population as defined by the Census [22].
The final value is an estimate of the total number of haplotypes in the European American pop-
ulation in the US (Fig 4; see S2 Fig for the other populations). When we estimated Xmin, Xmax

and α from the distribution (purple full line) an excellent fit was obtained.
To investigate the sensitivity of the model to parameter estimates of Xmin, Xmax and α, we

fixed the value of α based on the Eq 9, and optimized Xmin and xmax or fixed one of these vari-
ables at their extreme values and optimized α. The fit diverges from the observed result (Fig 4
and S2 Fig). The strongest deviation is for a fixed α, and the smallest is for a fixed Xmin. A fixed
Xmin is expected to have the smallest effect, since its estimate is closest to the reality in the
studied distributions.

To summarize, the method above has been shown to converge properly in simulated and
sampled data. However, for accurate estimates, it is recommended to treat all parameters Xmin,
Xmax and α as free parameters to be estimated in the model.

Haplotype Numbers in US Sub-populations
The resulting total number of haplotypes (H) in the European American population in the US
is 286,787. Values for other sub-populations are given in Table 2. For most populations, the
haplotype frequency distribution follows a power law with exponent α of the PDF between 1.4
and 1.9. Further, estimates of the power law exponent converged before the full sample size
was analyzed (Table 3 and S3–S8 Figs).

Fig 4. Comparison of computed and observed expected number of haplotypes in a sample of size R :
U(R)for the European American population for different sample sizes R. The gray squares are observations.
All estimates were performed using 10% of the sample. The lines are an estimation of U(R) with all free
parameters (full purple), maximal Xmax and free α (dashed green line), free Xmax and free α but fixed Xmin
(dashed black line) and free boundaries but α based on the Clauset estimate (double dashed red line). The
inset shows the ratio between the computed number of haplotypes and the real one.

doi:10.1371/journal.pcbi.1004204.g004
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Table 2. Analysis of the five combined populations (African-Americans, Asian and Pacific Islanders, European Americans, Hispanic and Native
Americans).

Population African Americans Asian / Pacific
Islander

European American Hispanic Native Americans

Size of population in Census 3.77E+07 1.49E+07 1.97E+08 4.52E+07 2.25E+06

Exponent value (Value of alpha) 1.47 1.54 1.52 1.52 1.68

Current sample size (R) 1.01E+06 1.14E+06 7.82E+06 1.43E+06 9.23E+04

Current fraction of population covered 0.983 0.985 0.994 0.984 0.934

Current number of known haplotypes 3.72E+04 3.69E+04 8.86E+04 4.45E+04 1.00E+04

H 1.42E+05 9.98E+04 3.16E+05 1.77E+05 4.70E+04

U(R) for current sample size 3.89E+04 3.83E+04 9.45E+04 4.73E+04 1.08E+04

U(R) for the whole population 1.30E+05 9.02E+04 2.87E+05 1.61E+05 4.17E+04

Target sample size in order to get to 99.4%
coverage

4.89E+06 3.88E+06 7.76E+06 6.16E+06 1.66E+06

The first row is the total size of the sub-population in the census, the second row is the estimate of α from U(R). The third row is the sample size. The
following rows are fraction of the population covered, current known haplotypes number, estimate of maximal haplotype number, estimate of observed
haplotype number according to the U(R) estimation. The following row (eighth row) is the estimated number of haplotypes for the entire census population.
The last row is the required population size to get coverage similar to the European American population.

doi:10.1371/journal.pcbi.1004204.t002

Table 3. The values of α obtained from the 21 detailed US populations studied here.

Number of Samples Clauset Estimate with half population Estimate with full population

1. African American 8.33E+05 1.75 1.46 1.45

2. Caribbean Indian 2.87E+04 2.49 1.62 1.79

3. African 5.71E+04 2.17 1.58 1.56

4. European American 7.82E+06 1.78 1.62 1.60

5. Chinese 1.99E+05 1.96 1.59 1.58

6. South Asian 3.71E+05 1.86 1.59 1.58

7. Filipino 1.01E+05 2.08 1.60 1.59

8. South/Cntrl Amer. Hisp. 2.93E+05 1.94 1.55 1.54

9. American Indian South or Central American 1.19E+04 2.86 1.61 1.60

10. Hawaiian or other Pacific Islander 2.30E+04 2.49 1.66 1.65

11. Black South or Central America 9.78E+03 2.87 1.65 1.63

12. Alaska Native or Aleut 2.75E+03 3.27 1.79 1.77

13. Japanese 4.92E+04 2.04 1.55 1.55

14. Other Southeast Asian 5.59E+04 2.21 1.84 1.84

15. North American Indian 7.16E+04 2.12 1.53 1.52

16. Korean 1.55E+05 1.85 1.51 1.50

17. Vietnamese 8.71E+04 1.99 1.60 1.59

18. Black Caribbean 6.67E+04 2.16 1.60 1.58

19. MidEast/No. Coast of Africa 1.42E+05 2.08 1.58 1.57

20. Caribbean Hispanic 2.31E+05 1.94 1.54 1.54

21. Mexican or Chicano 5.22E+05 1.88 1.55 1.54

The second column is the number of samples used for these populations. The following columns are α estimates, based on the Clauset estimator (third
column) and our parametric method, using half the sample or the full sample (last two columns).

doi:10.1371/journal.pcbi.1004204.t003
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An important aspect of Eq 7 is that it does not saturate until the sample size is close to the
full population size. We therefore expect that haplotypes discovery rate should remain appre-
ciable with continued sampling given that the current sample size is about 3.97% of the Euro-
pean American populations. In contrast, if the distribution were light-tailed, we would be
expected to detect all of the haplotypes that exist. Since the distribution is heavy tailed, we esti-
mate to have detected only 30% ofH that exist in the US population (Table 2).

Population Coverage
An important aspect of the low value of α (α$ 2 in most cases) is that there is a large difference
between the fraction of observed haplotypes and the population coverage, defined as the frac-
tion of samples (two per person) with a known haplotype. When α is close to 1, most of the
haplotypes have practically no contribution to the coverage. Actually only very few haplotypes
in the right hand tail of vH(x) (the larger values of x) contribute to the population coverage. For
example, in the European American population, the most frequent 1% of haplotypes provide
73.18% of the coverage.

The fraction of the population with haplotypes which have already been identified can be
computed to be (see S4 Text):

FractionCoveredðRÞ ¼ 1% 2% a
Xmax

2%a % Xmin
2%a

Ra%2½gð2% a;RX
max
Þ % gð2% a;RX

min
Þ); ð11Þ

where γ is the partial gamma function. As was the case for Eq 7, we compared the values ob-
tained from this calculation to the values obtained in the simulation mentioned above, and ob-
tained an excellent fit (S9 Fig).

One can apply Eq 8 to the European American population, for example, and obtain that
only around 88,620 haplotypes are identified today, out of over 286,787 haplotypes that are es-
timated to exist in the total population (Fig 5A and Table 2). However, the coverage of these
88,620 haplotypes is about 99.4% (Fig 5C and Table 2). The relationship between the coverage
and the number of haplotypes depends on α, and varies among the studied populations. We
analyzed 5 combined populations, for which clear census based estimates of the total popula-
tion size are available (African-Americans—AFA, Asian Pacific Islanders—API, European
Americans—CAU, Hispanic—HIS and Native Americans—NAM), and calculated the sample
size needed in order to have the same percent coverage of the European American population
(Fig 5D and Table 2). The combined populations have similar distributions (Fig 5A), with the
European American population having the flattest distribution (least diverse, or most contribu-
tion from frequent haplotypes), and the Native American having the steepest slope (most di-
verse, and the least contribution from frequent haplotypes). However, since as mentioned
above the number of haplotypes (H) is affected by the total population size, the Native Ameri-
can population is actually the least diverse, while the European American population is the
most diverse, whenH is taken as a measure of the diversity (Fig 5B). While most haplotypes
are not sampled, most individuals in the population carry known haplotypes. As mentioned
earlier, 99.4% of the European American population is covered by observed haplotypes (Fig
5C). Coverage is also more than 98% for the Hispanic, African-American and Asian/Pacific Is-
lander populations. Coverage is less for the Native American population at 93.4% percent. In
order to reach the percent coverage that currently exists for the European American popula-
tion, 1 to 6 million additional donors would need to be recruited for each of the other popula-
tions (Fig 5D). This represents a factor between the required and existing sample size of
around 3 for the Asian Pacific Islanders, but up to 15 for Native Americans, as summarized in
Table 2.
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Probability of New Haplotype Discovery
The contrast between the small fraction of haplotypes known and the large coverage implies
that the frequency of each undiscovered haplotype is expected to be very small. The probability
that a haplotype from a newly sampled host is not present in the current sample of size R is
(see S4 Text):

ZðRÞ ¼ 2% a
Xmax

2%a % Xmin
2%a

Ra%2½gð2% a;RXmaxÞ % gð2% a;RXminÞ) ð12Þ

where γ is the partial gamma function. We validated the accuracy of our analytical equation
using simulation (S10 Fig). This function decreases slowly as a function of sample size R, which
explains the high degree of population coverage achieved even with limited discovery of all
haplotypes in the population. Additionally, this value could be used to assign an expected fre-
quency to missing haplotypes, which in turn could be used in HSCT matching to assign haplo-
type frequencies to newly discovered haplotypes not covered by the EM haplotype frequencies.

Estimates of A (Number of Unique Alleles)
A similar analysis can be performed on the observed portion of A. Each haplotype is composed
of alleles at 6 genetic loci: ‘A’,’B’,’C’,’DQB1’,’DRB1’,’DRBX’. We separated the haplotype data
and generated allele distributions for each of the 6 loci. Our assumptions about the alleles are
just the same as for the haplotypes, and a similar analysis was performed on each loci. We fit
the expected number of alleles U(R) as a function of the sample size R to the actual number of

Fig 5. Properties for haplotypes frequency distribution for 5 populations : Native Americans (NAM), European Americans (CAU), Hispanic (HIS),
African-Americans (AFA) and Asian Pacific Islanders (API). (A) Histogram of haplotype relative frequency distribution for the five combined populations:
Native Americans (NAM, black circles), European Americans (CAU, gray triangles), Hispanic (HIS, green diamonds), African-Americans (AFA, purple
circles) and Asian Pacific Islanders (API, red circles). (B) Estimated (black) and currently observed (white) total number of haplotypes. (C) Fraction of non-
covered population for the five combined populations. (D) Current sample size (white) and estimated sample size required to get coverage similar to the
European American population (black) for the five combined populations. Note that if the fit to a truncated power law would be precise, the required and
observed population size would be precisely equal for the Caucasian population. However, there are some limited deviations in the fit, and the required
population from the theoretical analysis is 7.76E+06, while the observed population size is 7.82E6 (a difference of less than 1%).

doi:10.1371/journal.pcbi.1004204.g005
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unique alleles in partial samples of the data we have for alleles (see Methods) to obtain the val-
ues of Xmin, Xmax and α.

The allele distribution by loci is very flat with powers approaching 1 (Table 4). Such powers
give most of the importance to the frequent alleles and reduce the total number of alleles for a
given population size. Indeed, estimates of A according to the current sample for the data of
the five combined populations are not much higher than the observed number of alleles (Fig 6
left plot).

Consequentially, the fraction of uncovered population is much smaller for the alleles than
for the haplotypes reaching 0.1% in the worst case (Native Americans for HLA—B which is the
most diverse locus (Fig 6 right plot)). As expected by their reported diversity [9], Class I HLA
alleles have a slightly higher power exponent (1.2–1.3) than class II (around 1) (Table 4). The
class II power exponents, which are all close 1, are expected from neutral evolution model [23],
highlighting that if selection occurs, it is mainly focused on class I or it is occurring at the
haplotype level.

Surprisingly, the discovery rate for new alleles in the IMGT database appears to be increas-
ing, in contrast with the conclusion that most alleles are known, raising the suspicion that the
total number of existing alleles is much larger than current estimates. However, the estimates
above propose that most alleles are currently known.

Table 4. Estimate of α for the allele frequency distribution for all allele types and for each combined sub population.

Population A B C DQB1 DRB1 DRBX

African Americans 1.19 1.21 1.17 1.01 1.05 1.03

Asian / Pacific Islander 1.15 1.17 1.16 0.93 1.09 0.99

European American 1.28 1.29 1.23 0.97 1.15 1.07

Hispanic 1.20 1.14 1.15 0.99 1.11 1.02

Native Americans 1.13 1.18 1.07 1.04 1.06 0.98

doi:10.1371/journal.pcbi.1004204.t004

Fig 6. Alleles results. (left) Known (colored) vs. total alleles (transparent) for the five combined populations. The fraction of known alleles is between 50 and
100%. (right) Fraction of uncovered population per allele and combined population. These fractions are much lower than for haplotypes and never reach
more than 0.1%.

doi:10.1371/journal.pcbi.1004204.g006

OnModeling Allele and Haplotype Diversity

PLOS Computational Biology | DOI:10.1371/journal.pcbi.1004204 April 22, 2015 14 / 21



To better understand this contradiction, we computed allele sample sizes during the years
1987–2011 and calculated the expected number of alleles based on these sample sizes, using the
α, Xmin and Xmax values obtained for the largest sample. We plotted the expected number of al-
leles as a function of time and compared it to the number of alleles which were identified by
that date in the IMGT (Fig 7). In analyzing the entire US population as a whole, a comparison
between the expected number of alleles U(R) and those actually observed presents a contradic-
tion: Initially, the number of observed alleles was significantly less than expected based upon
sample size; presently, it is much larger than expected.

The explanation for this contradiction appears to be two-fold: First, false allele discovery
represents a known source of error common with PCR when crossover products occur [22]
and could contribute to the observed discrepancy. Second and more importantly, the transition
to sequencing-based typing (SBT) changed the fundamental nature of allele definitions and im-
proved capacity for allele discovery. With a much larger definition of alleles and a higher dis-
covery rate, the fundamental power law relationship would be expected to change at some
point in time as the data sources move towards SBT versus older oligo or serology based meth-
ods. For example, a recent data submission from a single SBT laboratory resulted in a 30% in-
crease in the number of observed alleles [24]. Thus, our current power-law methodology
appears flawed for providing accurate estimates for the number of unique alleles and requires
future modifications to accommodate the mixed data sources.

Fig 7. Comparison between expected and observed number of alleles for each locus. The black circles represent the numbers computed from theU(R)
based estimate. The green diamonds represent the alleles in the registry, the gray triangles represent all alleles in the IMGT. The analysis is on all samples
combined. Each subplot represents a different locus.

doi:10.1371/journal.pcbi.1004204.g007
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Discussion
In this analysis, we developed a quantitative methodology for measuring haplotype and allele
diversity with a particular application in mind of estimating A andH in the United States pop-
ulation to inform HSCT matching. Quantitative estimates of A andH are important for assess-
ing whether typed donor cohorts have sufficient sampling depth to capture the clinically
relevant HLA variation among individuals. Estimates of A andH for the Be The Match Regis-
try suggest that current registry sampling depth is sufficient to represent only 52–100% of A
and 21–30% ofH across the 5 main racial populations assessed. The number of “rare” alleles
and haplotypes, however, is small compared to the number of “common” ones suggesting that
the current diversity of our registry is sufficient to describe 99.94–100% and 93.4–99.4% of the
overall United States population with respect to allele and haplotype coverage. Further, the esti-
mation methods developed in this article quickly converged—with limited sampling depth—to
accurate estimates of allele and haplotype diversity in the presence of heavy-tailed distribu-
tions. Popular methods intended for measuring diversity with bell shaped distributions were
shown to require deep samples before achieving meaningful convergence, as was the case for
capture-recapture models, or failed outright to converge toward accurate estimates. A detailed
comparison of our methodology with state of the art species richness estimates, as performed
by the CatchAll software, show a much faster and more precise convergence to the real haplo-
type number using our methodology.

The methodology we developed is closely aligned with the broader fields of ecology, compu-
tation, and statistics as they relate to describing species richness, language diversity, data base
storage, and occupancy. The common thread among these problems is the need to understand
the behavior of “rare” events in a population with a heavy tail distribution: this can be problem-
atic because “rare” events represent critical patterns that have minimal, if any, representation
within the sample. Appropriate statistical methodologies for “rare” events recognize that light
tailed distributions (often having the characteristic bell shape) are inappropriate for adequately
describing population diversity. The assumption of a light tailed distribution implies that a rel-
atively small sample is enough to detect and fully describe the population (i.e. captures all spe-
cies or haplotype diversity). This intuition stems from the absence of extremely rare events,
which is an untrue assumption for a heavy tail distribution. For example, in most realistic spe-
cies distributions, the majority of species are very rare, and thus a very deep sample is required
to detect most species. Moreover, if the tail is flat enough, another element should be incorpo-
rated, which is the extreme contribution of the most frequent species to the distribution. In
such cases, most of the population will belong to a very small number of species.

Therefore, we built our model around a truncated power-law for estimating the properties
of infinite discrete distributions with regularly varying heavy tails [7,8,14]. The properties of
our data fit these assumptions, which require an index of variation α 2 (1,2) for the PDF of fre-
quencies: our index of variation ranged from 1.45 to 1.85 across the 21 populations. We note
that to support the interpretability of our results, we modeled the PDF of frequencies whereas
others have modeled the CDF of frequencies where values of α will be α - 1 units smaller. It is
important to note that the convergence to the proper values of α occurred for a limited sample
size. Thus, our method may be applicable for other surveys where the sample size is much
smaller. Moreover, beyond the need to estimate the total number of different haplotype, the
proposed method can be used to properly estimate α for small population sizes.

In the infinite case, one ignores the right hand side behavior because the “common” events
offer a negligible contribution to overall diversity. Eventually, one might consider a more com-
plex model where we define v xð Þ ¼ Cx%aLðxÞ, with L (X) being a general function with the
property that limx ! 0 L(x) = 1, limx ! 1 L(x) = 0. Such a function would account more
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smoothly for the different slopes in the left hand part and the right hand part of the distribu-
tion. Note however, that in realistic situations, the most frequent haplotypes (or species) are
well known, and their frequency is well estimated. Thus, a simpler approach could be to split
the population into frequency known haplotypes and rare haplotypes, and focus on the distri-
bution of the rare haplotypes, taking into account that their contribution to the population cov-
erage may be very limited, even if they constitute the vast majority of the diversity.

While we have here focused on the HLA haplotype distribution, the same formalism can be
applied to other domains of ecology and population genetics, where the species richness distri-
butions have heavy tails [25,26,27,28], see [29] for a review. In ecological scenarios, since most
species are very rare, the current shrinking of the wildlife population is equivalent to a dramatic
reduction in the total diversity. While in normal distributions we expect species to disappear
and diversity to be significantly reduced only when the total population is close to extinction,
the heavy tailed distribution of species frequencies leads to opposite conclusions. For example,
assuming parameters similar to the ones obtained here, a 10 fold reduction in the total popula-
tion would be equivalent to a 17–18% reduction in the number of species.

Note that in ecological scenarios, it is not appropriate to assume that all species are equally
detectable at the level of the individual. Certain species are less detectable based on experimen-
tal or behavioral elements (e.g. speed of movement). A future development of such methods
should be the introduction of a frequency bias in the detection probability.

Regarding validation, we compared our estimates of A andH—based upon subsamples of
the data—to counts obtained by enumerating the complete data set. Although our predictions
aligned reasonably with the absolute frequencies, we are concerned with the fact that the un-
derlying data may be biased towards over-representing common alleles and haplotypes; thus,
our estimates of A andHmay under-represent the true population diversity. Our concern is
based upon the mechanics of the EM algorithm, which trim the tail of the haplotype frequency
distribution numerous times during the estimation process to generate a parsimonious and
tractable candidate set; without trimming the number of potential haplotypes that greatly ex-
ceeds the number of donors. Further, expected changes in typing technology (that are already
underway) from SBT to next generation sequencing (NGS) may also re-define allele definitions
and increase the capacity for allele discovery. For example, NGS has the ability to detect allelic
variants previously “hidden” behind genotypes that only differ by recombination [30]. In short,
EM and typing technology factors could increase estimates for A andH by changing the funda-
mental nature of the power law relationship.

Methods
Haplotype and Allele Frequency Data
Six-locus high resolution HLA A~C~B~DRBX~DRB1~DQB1 (where DRBX = DRB3/4/5)
haplotype frequencies were estimated across 21 race groups using an EM algorithm and 6.59
million donor HLA typings from the Be The Match Registry: complete details regarding the
data and estimation are provided by Gragert [11]. In brief, an EM algorithm was utilized to re-
solve uncertainties in allele and chromosomal phase for a mixed resolution set of donor HLA
typings (serology, sequence-specific oligonucleotide/primer, and sequence based typing). The
only notable change from the Gragert methodology was that in the last iteration of the EM al-
gorithm, a winner-take-all approach was applied where each donor contributed 1 unit of prob-
ability mass to their most likely pair of haplotypes; this is opposed to each donor assigning 1
unit of probability mass across a range of haplotype pairs—consistent with their HLA typing—
in proportion to their conditional likelihood. Allele frequencies were derived as marginal sums
of the haplotype frequencies.
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Methodology Validation
We have performed simulations with chosen α and Ntotal. For each set of α and Ntotal values,

we set Xmin to be
1

Ntotal

.
, and calculated the maximum value possible for Xmax using

numerical solution of x2(1-xα-2)-C = 0 where C = (2-α)Ntotal (see Eq B6 in S2 Text). We then
calculated the number of unique haplotypes expected in the total population (H). Next, we

generatedH pj’s for the distribution (see S1 Text) by inverting the CDF, obtaining: pj ¼

ðXmax
1%a % Xmin

1%aÞrandð0; 1Þ þ ½Xmin
1%a)

1=
1%a where rand(0,1) is a uniform random number

between 0 and 1. We checked that the sum of all pj’s indeed equals 1, and very limited deviations
were observed. We normalized the results to overcome the imprecise sum. We then produced a
random population with these a priori probabilities, and compared the expected frequency of a
haplotype unobserved in a sample (Z(R)), the expected number of unique haplotypes in the
population (U(R)) and the fraction of the population covered by these haplotypes to the simula-
tions results. Code for the estimation of U(R) and a test set are available in the Supp. Mat.

Numerical Optimization
Given an observed population's haplotype frequency distribution, we assume that the frequen-
cy distribution is a scale free distribution with upper and lower cutoff values: Xmin$x$Xmax.
We assume a zero probability of observing haplotypes with frequencies beyond these values. In
order to estimate the properties of the distribution, the values of α, Xmin and Xmax should be es-
timated. We provide boundaries for Xmin and Xmax using Eq B1 and B6 in S2 Text. We then
perform a numerical fit of the observed and expected (Eq 8) unique haplotypes, with a cost

function of
X

R0

ðlogðUðR0Þ % logðobservedðR0ÞÞ2 * logðobservedðR0ÞÞ for different values of

sample sizes R’. We use an initial guess of the parameter above using Eq B1 for Xmin, the highest
observed frequency X0max, and the estimate of α, based on Eq 9. We then extract the optimal
parameters (α, Xmax, Xmax), calculate the expected total number of unique haplotypesH and
produce an estimate of the number of unique haplotypes for any population size U(R).

Supporting Information
S1 Text. Normalization for haplotype frequency density function.
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